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Abstract

This thesis is about the development of a Extended Kalman Filter SLAM
algorithm for a rover equipped with a stereo camera, wheels encoders and
gravity sensor exploring an unknown 3D surface. SLAM algorithms can
reconstruct the position and orientation of a rover using landmarks and
at the same time build a map of the observed landmarks.

The Differential Algebra Computational Toolbox (DACE) library for
C++ has been used for the estimation of the involved Jacobians.

In the Numerical results part it is shown how this algorithm reconstruct
with more accuracy the position and orientation of the rover than an
approach based merely on odometry integration.
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Abstract

Questa tesi tratta lo sviluppo di un algoritmo SLAM basato su un filtro
esteso di Kalman per un rover equipaggiato con una fotocamera stereo-
scopica, ruote con encoders e sensore di gravità che esplora una superficie
3D sconosciuta. Gli algoritmi SLAM possono ricostruire la posizione e
l’orientamento di un rover usando le misurazioni di alcuni punti di riferi-
mento e allo stesso tempo possono costruire una mappa dei punti di rifer-
imento osservati.

È stata usata la libreria di Algebra Differenziale DACE per C++ per
valutare le matrici Jacobiane coinvolte.

Nella parte dei risultati numerici viene mostrato come questo algoritmo
permetta di ricostruire con molta più precisione la posizione e l’orientamento
del rover rispetto ad un approccio basato solo sull’integrazione dell’odometria.
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Chapter 1

Introduction

Localization and mapping are two fundamental problems for space ex-
ploration missions. Indeed on other planets GPS or similar satellite-based
navigation systems are not available. The surface of the planet can be slip-
pery and irregular, so relying only on the odometry can be too inaccurate.
An alternative way of localization is needed.

SLAM is a good solution since it can solve simultaneously both the
problems and exploit the created map to improve the precision of the
localization.

1.1 Aim of the thesis
The aim of this thesis is to build and study an Extended Kalman Filter
SLAM algorithm for the 3D case of a rover exploring an unknown surface.
The algorithm will use the Differential Algebra Computational Toolbox
(DACE) library for C++ for the estimation of the Jacobians.

The filter won’t include a dynamic model since this is not relevant in
the case analyzed (due to the small velocity of the rover and the unknown
and irregular surface shape).

The considered sensors will be:
• A parallel stereo camera oriented like the trajectory.

• Wheels encoders used to get the odometry (distance traveled by the
right and left wheels).

• Gravity sensor used to correct the local z axis orientation.
The considered map will be a randomly generated surface and the land-
marks will be extracted as the local maxima points of the map.

The trajectory examined will be circular.
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2 Chapter 1. Introduction

1.2 Comparison with other approaches
SLAM algorithm is not the only way to determine the position and the
orientation of a rover. A more widespread methods is the only use of
proprioceptive based odometry, for example based on the distance traveled
by the wheels [6].

Instead a more complex approach is the use of visual odometry. This
method has been used on the Mars Exploration Rovers.

The advantages of a SLAM algorithm with respect to these approaches
are mainly two:

• A more precise estimation of the position and the orientation of the
rover with respect to the proprioceptive based odometry, specially
on high-slip environments [11, 12].

• The creation of a map made by the landmarks observed during the
path. More complex SLAM algorithm than the one developed in
this thesis could have global consistency. This is achieved by real-
izing that a previously mapped area has been previously observed
(loop closure) and this information is used to reduce the drift in the
estimates [25].

In this thesis the results obtained with the SLAM algorithm will be com-
pared to an odometry approach based on the distance traveled by the
wheels of a rover. The high-slip environment will be simulated with a
Gaussian error on the odometry data.
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1.3 SLAM algorithms
“Simultaneous Localization and Mapping (SLAM) is the problem of con-
currently estimating in real time the structure of the surrounding world
(the map), perceived by moving exteroceptor sensors, while simultane-
ously getting localized in it.” [19]

SLAM algorithms solve the problem of spatial exploration. When a
person is in an unknown space, he observes what is around him while
moving.

Without even knowing he is building a map of the world around him,
and at the same time he is being spatially located in this map. This is
also what a SLAM algorithm does [25].

Figure 1.1: SLAM algorithm

The filter used in this thesis is an Extended Kalman Filter. This filter
is likely the most widespread technique for state estimation. EKF is based
on the Bayes filter for the filtering and prediction of non linear functions,
which are linearized using a 1st order Taylor series expansion [25, 20].

EKF is also based on the assumption that the estimated states has a
Gaussian distribution and, by applying the transformations, these keep
Gaussian distributions [7].
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The main features of SLAM will be explained in the following lines:
SLAM algorithm basically consist of three different operations, which

are iterated at each time step [21]:

• The rover observes new landmarks, which can be used to create
a map. The position reconstructed by the rover is uncertain due to
errors. The mathematical model that computes the position of the
landmarks using the measurements and the position of the rover is
called inverse observation model.

• The rover moves, and reaches a new point of the map. Due to the
errors this increases the uncertainties of the position. The mathe-
matical model for simulating this process is called motion model.

• The rover reobserves the landmarks, and uses them to cor-
rect its position, orientation and also the position of all landmarks
in space. After this operation all the uncertainties decrease. The
mathematical model that predict the measurements using both the
position of the landmarks, the position of the rover and its orienta-
tion is called direct observation model [19].

1.4 Differential Algebra
The theory of Differential Algebra (DA) has been developed by Martin
Benz in the late 80’s. This section is about the main idea behind it and
its basics.

DA techniques find were created to solve analytical problems by an
algebraic approach. The basic idea is to treat functions and operations in
a similar way to the real numbers [3, 2, 4].

A real numbers R is represented on a computer by an approximation,
a floating point number F. Each operation on F is defined so that the
resulting number is an approximation of the real computation. Using this
environment it is possible to evaluate complicated mathematical equations
and obtain a floating point number as result.

The figure below is an example useful to make the concept clearer.
The evaluation of the expression 1

x+1 is computed with real numbers, so
without any approximation, on top and with floating point numbers at
the bottom.
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The final result in the floating point environment is only an approxima-
tion of the real computations, but it’s precision can be adjusted to satisfy
the requirements and in general is good enough for a practical case.

R : 2 +1−−−−−−−−→ 3 1/−−−−−−−−→ 1
3

m= m= m≈

F : 2 −−−−−−−−→
+1

3 −−−−−−−−→
1/

0.3333

Figure 1.2: Evaluation of 1
x+1 for x = 2 in R and F

Such as real numbers, also functions can be approximated to be op-
erated on in an algebraic way. The key feature of DA is to efficiently
represent sufficiently smooth functions in a computer environment so that
they can be handled with arithmetic expressions. From this point of view
the idea is very similar to floating point numbers.

Cr(0) : x
+1−−−−−−−−→ x + 1 1/−−−−−−−−→ 1

x+1

m= m= m≈

DA : x −−−−−−−−→
+1

x + 1 −−−−−−−−→
1/

1 − x + x2 − x3

Figure 1.3: Evaluation of 1
x+1 in the function space Cr and DA arithmetic

As with floating point numbers also with DA the representation is an
approximation. In fact DA make use of the truncated Taylor expansion
of a function f up to a fixed order. The function is evaluated around the
origin [3].

In this work the DA is used to compute the Jacobians matrices. In fact
derivation in the DA framework is an easy task like selecting the correct
coefficient of a polynomial (the Taylor expansion mentioned above).

More traditionally these matrices are computed analytically if the mod-
els involved are simple enough or with a numerical differentiation approach
if the models are more complex.
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1.5 Overview of the thesis
The thesis is divided into five chapters:

• The first explains which model has been considered, the two differ-
ent reference frames with their mathematical representation and the
architecture of the simulation.

• The second chapter is about the generation first of the simulation
environment and then of the odometry data and measurements.

• The third chapter is about the SLAM algorithm and how it works
step-by-step.

• The fourth chapter is about the obtained results and their analysis,
with the SLAM algorithm and, for comparison, with an odometry
based approach.

• In the last one there are the conclusions and the future developments.



Chapter 2

Model

2.1 Rover
The size of the considered rover is similar to the Curiosity rover, which is
about the size of a small SUV [13]:

[m]
Length 3
Width 2.7
Height 2.2

Table 2.1: Curiosity rover size

The required data for the considered rover, like the camera height or
the distance between the cameras has been derived to be compatible with
the mentioned size:

Variable Value in [m]
Camera height h 1.5

Distance between the left and right wheels dbaseline 2
Distance between the cameras 2 ∗∆stereo 2

Table 2.2: Considered size

7



8 Chapter 2. Model

The technical specification used for the simulation are reported here:

Variable Value Unit of measure
Speed v 0.1 [m/s]

Odometry frequency fodometry 3 [Hz]
SLAM frequency fSLAM 1 [Hz]

Horizontal Field Of View HFOV 60 [◦]
Vertical Field Of View V FOV 30 [◦]

Number of horizontal pixels 2 ∗ xmax 5120 −
Number of vertical pixels 2 ∗ ymax 5120 −

Table 2.3: Considered specifications

The rover has always the camera oriented like the velocity vector. This
assumption is useful to simplify the model and only account for 6 degrees
of freedom, 3 for the position and 3 for the orientation.

Actually the state vector s contains 7 variables only for the rover. That
is because the orientation is expressed with a non-singular representation,
the rotation quaternion, so an extra variable is needed.

2.2 Models
The are different models involved in this work. This subsection is a sum-
mary of the most important ones to better understand the development
of the thesis.

2.3 Odometry
The odometry uses the distance traveled by the left and right set of wheels
(only two distances are considered, one for the left side and one for the
right side, so the model is independent on the number of wheels) to de-
termine the displacement and the angle of curvature for every integration
step. The measurements of the distances account a Gaussian error model.

Since the surface shape is unknown a priori, in the SLAM algorithm
the displacement is considered in the x − y plane of the local reference
frame (so with a zero local z component). This is maybe the assumption
that has the biggest limitation on the prediction step (4.2) but it is a
forced choice because of the absence of other information.

To better understand the orientation of the rover the SLAM algorithm
has access to the normal to the surface (altered by a Gaussian error) only
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at the first integration step of the odometry data. This simulates the
presence of a gravity sensor.

The trajectory considered is circular, around the center of the ran-
domly generated map.

2.4 Camera setup
The camera considered is a stereo camera. Using the two different ac-
quisitions made by this camera it is possible to reconstruct the relative
position of the landmark without other information. The technical specifi-
cation of this camera are written in 2.1. The data association has not been
simulated, so the landmarks are recognized every times without failures.

2.5 Architecture of the simulation
The simulation is divided in three phases. First there is the generation
of the simulation environment and of the landmarks, selected as the local
maxima of the surface.

Then there is the generation of the odometry data and the measure-
ments. This part is done before the start of the SLAM algorithm with the
exact knowledge of the surface, the position and the orientation. The data
generated is subject to an error. The last step is the SLAM algorithm.
The algorithm uses the odometry data and the measurements generated
in the previous phase.

2.6 Reference frames
Two different reference frames are considered, the absolute frame, fixed
with the map, and the local frame, which follows the motion of the rover
and orientation:
The absolute frame has the center in (0, 0) and is oriented like the axes
of the map.
The local frame has the center in the position of the rover and is oriented
with:
• x axis defined as x = y ⊗ z.

• y axis oriented like the velocity vector of the rover.

• z axis oriented like the normal vector to the surface.
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2.6.1 Rotation quaternion
A rotation quaternion is used to express the orientation of the rover and
to save it in the state vector s.
This non-singular representation is the one with the minimum number of
variables as well as being more computationally efficient than the Direction
Cosine Matrix (DCM) counterpart.

The following subsections correspond to operations widely used in this
work.

2.6.1.1 From DCM to rotation quaternion

Since the local reference frame is defined starting from both the velocity
vector of the rover and the normal vector to the surface, it’s easy to build
the DCM.
The matrix can be composed entering in every row the three absolute
components (x, y, z) of the local reference frame axes.
So the DCM that switches from the absolute frame to the local one is
made by:  xx xy xz

yx yy yz
zx zy zz


With the three axes defined in 2.6.
One interesting property is that, since the DCM is orthogonal, the inverse
of the DCM can be computed as its transposed:

DCM−1 = DCMT

Given that the chosen representation is the quaternion one, the DCM
must be converted in the quaternion form.
This can be done in different ways. The selected approach is the following
one:

• If the trace of the DCM is positive:

– sq = 1
2∗(trace+1)

–

q0 = 1
4∗sq

q1 = [DCM(2, 1)−DCM(1, 2)] ∗ sq
q2 = [DCM(0, 2)−DCM(1, 2)] ∗ sq
q3 = [DCM(1, 0)−DCM(0, 1)] ∗ sq

• Otherwise ifDCM(0, 0) > DCM(1, 1) andDCM(0, 0) > DCM(2, 2):
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– sq = 2 ∗
√

1 +DCM(0, 0)−DCM(1, 1)−DCM(2, 2)

–

q0 = [DCM(2, 1)−DCM(1, 2)]/sq
q1 = 1

4∗sq
q2 = [DCM(0, 1) +DCM(1, 0)]/sq
q3 = [DCM(0, 2) +DCM(2, 0)]/sq

• If the first two expressions are not satisfied andDCM(1, 1) > DCM(2, 1)
then:

– sq = 2 ∗
√

1 +DCM(1, 1)−DCM(0, 0)−DCM(2, 2)

–

q0 = [DCM(0, 2)−DCM(2, 0)]/sq
q1 = [DCM(0, 1) +DCM(1, 0)]/sq
q2 = 1

4∗sq
q3 = [DCM(1, 2) +DCM(2, 1)]/sq

• If none of the expressions above is true:

– sq = 2 ∗
√

! +DCM(2, 2)−DCM(0, 0)−DCM(1, 1)

–

q0 = [DCM(1, 0)−DCM(0, 1)]/sq
q1 = [DCM(0, 2) +DCM(2, 0)]/sq
q2 = [DCM(1, 2) +DCM(2, 1)]/sq
q3 = 1

4∗sq

2.6.1.2 Normalize a rotation quaternion

All the relations defined in this section assume normalized quaternions.
So, it’s a good practice to always normalize the quaternions before apply-
ing these methods.
The normalization of the quaternion is analogous to the vector normal-
ization. It is defined as:

qnormalized = q√
q0 + q1 + q2 + q3

2.6.1.3 Invert a rotation quaternion

This relation can be used to invert a rotation quaternion:

• d = √q0 +√q1 +√q2 +√q3

•

q−1
0 = q0/d
q−1

1 = −q1/d
q−1

2 = −q2/d
q−1

3 = −q3/d
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2.6.1.4 Hamiltonian product

The Hamiltonian product is used to multiply two quaternions. Given three
quaternions (x, y, z), z = x ∗ y is defined as:

z0 = x0 ∗ y0 − x1 ∗ y1 − x2 ∗ y2 − x3 ∗ y3
z1 = x0 ∗ y1 + x1 ∗ y0 + x2 ∗ y3 − x3 ∗ y2
z2 = x0 ∗ y2 − x1 ∗ y3 + x2 ∗ y0 + x3 ∗ y1
z3 = x0 ∗ y3 + x1 ∗ y2 − x2 ∗ y1 + x3 ∗ y0

2.6.1.5 Rotate a vector

To switch from one reference frame to another a rotation quaternion is
used.
To rotate a vector from the absolute reference frame to the local one these
steps are followed:

• Transformation from vector v to quaternion p:

–

p0 = 0
p1 = vx
p2 = vy
p3 = vz

• Rotation of the quaternion p using the rotation quaternion q (the
product used in the following equation is the Hamiltonian product
2.6.1.4):

– p′ = q ∗ p ∗ q−1

• Extraction of the vector v′ from the quaternion p′:

–
v′x = p1
v′y = p2
v′z = p3

2.6.1.6 Combine two rotations

Two consecutive rotations (first by q1 and then by q2) can be combined
into an equivalent one with this relation, using the Hamiltonian Product
(2.6.1.4):

q′ = q2 ∗ q1



Chapter 3

Simulation environment

The generation of the environment is done using a MATLAB script.
It generates the surface, the normals to the surface, the landmarks and
exports these data as plain text files readable from the odometry data and
measurements generator.

3.1 Map and landmarks

3.1.1 Map

The map is generated as a random surface using a MATLAB function that
takes as inputs these parameters:

• σ - Standard deviation.
Changes the steepness of the surface (higher means steeper).

• H - Hurst exponent (0 5 H ≤ 1).
Changes the roughness of the surface (higher means rougher).

• Length of topography in direction x.

• Number of pixels in x direction.

• Number of pixels in y direction.

13
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Figure 3.1: Randomly generated surface

The normal vectors to every point of the map are computed using a build-
in function of MATLAB.
It takes as input only the height of the surface for all the x and y points.
The three outputs matrices (x, y and z components of the normal vector)
must be rearranged in a vector form to be more easily readable from the
odometry data and the measurements generator program.

3.1.2 Landmarks

The landmarks are selected as the local maximum of the surfaces.
Also these computations are done using a MATLAB function.
The adjustable parameters are:

• The surface generated above.

• The minimum distance between two local maxima.

After the computation, the local maxima nearer than the minimum dis-
tance from the borders of the map are excluded. Otherwise the points
found in these four belts would be computed for a smaller local area,
resulting in a more concentrated number of landmarks.
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Figure 3.2: Landmarks on the surface

3.2 Measurements and odometry data gen-
eration

Four different measurements are acquired for every landmark in FOV and
for every step of the algorithm:

• x coordinate in pixels of the landmark seen by the left camera

• y coordinate in pixels of the landmark seen by the left camera

• x coordinate in pixels of the landmark seen by the right camera

• y coordinate in pixels of the landmark seen by the right camera

To generate the measurements the following steps are followed:

3.2.1 Update the displacement and the velocity vec-
tor

The displacement is computed on the local plane x − y, considering a
rotation angle α and a radius of curvature rc, both fixed.
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αα

rrcc
ΔyΔy

-Δx-Δx

rrcc

(0, 0)(0, 0)

p(x,y,z)p(x,y,z)

p(x+Δx,y+Δy,0)p(x+Δx,y+Δy,0)

Figure 3.3: Odometry

Knowing rc and α it’s easy to compute the displacement as:

∆x = rc ∗ [1− cos(α)]
∆y = rc ∗ sin(α)
∆z = 0

The new velocity vector, used in 3.2.4 to update the orientation, is com-
puted simply rotating counterclockwise the local velocity vector (which is
pointed as the local y axis) by an angle α.

The new velocity unit vector in the local frame will be:

vx = −sin(α)
vy = cos(α)
vz = 0

To rotate the vector in the absolute frame the method explained in
2.6.1.5 is employed, using the vector v and the rotation quaternion q−1(2.6.1.3).

3.2.2 Update the position
The x and y coordinates of the position of the rover on the surface are
updated using the ∆x and ∆y computed in 3.2.1.

The z coordinate is obtained as the height of the surface in that point.

pNx = pN−1
x + ∆x

pNy = pN−1
y + ∆y

pNz = surface(x, y)
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Then the position of the center of the rover c is computed as the sum
of the position of the rover on the surface p and the normal to the surface
multiplied by the height of the rover h.

cN = pN + normal ∗ h

3.2.3 Save the odometry data
At each step the distance dl traveled by the left wheel, dr traveled by the
right wheel and the three components of the normal to the surface normal
in the current position are saved in a plain text file.

ddleftleft ddcentercenter
ddrightright

pp

αα

αα

rrccPP

left wheelleft wheel
(x,y)(x,y)

right wheelright wheel

(x+Δx,y+Δy)(x+Δx,y+Δy)

Figure 3.4: Distance traveled by the wheels

The distance traveled by the rover is called dcenter, while the distance
between the two wheels is called dbaseline.

Remembering that the arc length is equal to the radius times the angle
(d = α ∗ r), the length of the arc dcenter is [14]:

dcenter = dleft + dright
2

Subtracting α ∗ rright = dright from α ∗ rleft = dleft:

α(rright − rleft) = dright − dleft
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Another known relation is that the sum of the radius of curvature for
the left wheel and the distance between the wheels gives us the radius for
the right wheel:

rleft + dbaseline = rright
dbaseline = rright − rleft

Applying the last relation to the previous one:

α = dright − dleft
dbaseline

So substituting both α and dcenter in α ∗ rcenter = dcenter:

dright − dleft
dbaseline

∗ rcenter = dleft + dright
2

So the distance traveled by the wheels are computed as:

dl = (2∗rc−dbaseline)∗α
2

dr = (2∗rc+dbaseline)∗α
2

An error (generated by a Gaussian distribution of zero mean and with
variance σo, N (o, σo), is summed to the two distances.

dl = dl +N (o, σo)
dr = dr +N (o, σo)

The Gaussian error is then added to the three components of the nor-
mal:

normalx = normalx +N (o, σn)
normaly = normaly +N (o, σn)
normalz = normalz +N (o, σn)

3.2.4 Update the orientation
As explained in 2.6, the local frame is computed starting from the velocity
and the normal vectors.

The updated velocity vector comes from 3.2.1. To make sure it is
orthogonal to the normal to the surface only the perpendicular part is
extracted from it:

v⊥ = v − (v · normal) ∗ normal
Using the normalized v⊥and the normal to the surface, the DCM is

build and then converted to rotation quaternion, following the procedure
illustrated in 2.6.1.1.
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3.2.5 Compute the spherical coordinates
To obtain the measurements in pixels for every landmark in the FOV the
spherical coordinates θleft, φleft, θright, φright must be computed.

The Cartesian coordinates for the right and left camera for the i land-
mark can be found switching from the absolute frame to the local frames
of the cameras.

To do that the position of the center of the rover are subtracted to
the absolute position of the landmark (l = labsolute − c) and then, using
the inverse of the rotation quaternion q−1 (2.6.1.3), the position of the
landmark can be rotated in the local reference frame of the rover (as
explained in 2.6.1.5) [24].

The Cartesian coordinates of the landmark for the two cameras are
found adding half of the distance between the two cameras (∆stereo) to
the local x coordinate of the landmark for the left camera or subtracting
it for the right one.

lleft = lx + ∆stereo
lright = lx −∆stereo

The conversion from Cartesian coordinates to Spherical coordinates is
made in this way:

ρ =
√
l2x + l2y + l2z

θ = atan2(
√
l2x + l2y, lz)

φ = atan2(ly, l2x)

Figure 3.5: Spherical coordinates
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3.2.6 Add the error

The error model is the exponentially correlated random noise, better
suited for camera measurements than a simpler Gaussian noise, which
is completely uncorrelated for different time steps [17].

As expected the error Ek is correlated to the error at the previous step
Ek−1 exponentially.

The first value E1 is generated using a normal distribution with 0 mean
and standard deviation σm at the first step or every time a landmark ends
out of the FOV.

E1 = N (o, σm)

Starting from the second iteration the error is computed as:

Ek = K ∗ Ek−1 +
√

1−K2 ∗ N (0, σm)
K = e−

1
f∗τ

This correlation decay with a time scale given by τ .

To better understand how this model affects the measurements an
example plot error-time for this model is provided below.
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Figure 3.6: Error-time plot

This error is summed to the spherical coordinates θ and φ for both the
cameras before saving the results.
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3.2.7 Compute the measurements
To commute from spherical coordinates to pixels coordinates it is first
assumed to work only with the x axis (the procedure is the same for y).

A right triangle whose hypotenuse goes from the camera to the edge of
the image can be drawn. This triangle is represented in blue in the figure
below. The angle made between the base of length L, perpendicular to the
image, and the hypotenuse equals half of the horizontal FOV (HFOV ).

Another triangle, this time with the hypotenuse that goes from the
camera to the landmark, but with the same base L can be drawn. This
triangle is represented in red. The angle between the hypotenuse and the
base coincide with θ− pi

2 , where θ is the spherical coordinate. The side of
the triangles opposite to this angle is the x pixels coordinate, called px.

Both the pixels coordinates, px and py, have zero value in the center
of the captured image.

HFOV/2HFOV/2

θ-π/2θ-π/2

LL

xxmaxmaxppxx

Figure 3.7: Similar triangles

It is now possible to write some trigonometry relations:

tan(HFOV2 ) = xmax/2
L

tan(φ− π
2 ) = px

L

Since the distance L is the same for both the triangles, it is possible
to impose the equality for the two triangles to find out px:
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L = xmax/2
tan(HFOV2 )

L = px
tan(φ−π2 )

And finally the relation between px and the angle φ− pi
2 can be com-

puted:

px =
xmax ∗ tan(φ− π

2 )
2 ∗ tan(HFOV2 )

While the inverse relation is:

cot(φ− π

2 ) = xmax
2 ∗ px ∗ tan(HFOV2 )

The same procedure can be done for py resulting in these relations:

py = ymax∗tan(θ− pi2 )
2∗tan(V FOV2 )

cot(θ − π
2 ) = ymax

2∗py∗tan(V FOV2 )

Both the x and y coordinates are integer numbers, rounded to the
nearest one. The measurements are saved in a plain text file.
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EKF-SLAM algorithm

The state vector s considered for the SLAM algorithm is composed by the
three coordinates of the position of the rover (x, y, z), the four coordinates
of the rotation quaternion of the local reference frame that coincide with
the orientation of the rover (q0, q1, q2, q3), and three coordinates of the
absolute position of every landmark (x, y, z). So the total state vector s
length is 7 + 3 ∗ number of landmarks.

The length of the state vector s varies depending on the number of seen
landmarks in the current iteration, but a maximum number of landmark
is imposed.

The same goes for the state error covariance matrix P (called from
now on simply covariance matrix P ). The covariance matrix P shows
the error associated with the robot and the landmark state estimations.
From the covariance matrix P , it is possible to monitor the error and the
uncertainties of the estimation. Therefore the study on its behavior is one
of the most important issues of SLAM [15].

The covariance matrix P total size is (7 + 3 ∗number of landmarks) ∗
(7 + 3 ∗ number of landmarks) and varies likewise the state vector s.

P =


Prover Prover−landmark

P T
rover−landmark Plandmark


The covariance matrix P is divided in its three sub-matrices:

• The covariance of the rover Prover, of fixed size (7) ∗ (7).

• The cross-covariance rover and landmark Prover−landmark, of variable
size (7) ∗ (3 ∗ number of landmarks).

23
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• The covariance matrix of the landmark Plandmark, of variable size
(3 ∗ number of landmarks) ∗ (3 ∗ number of landmarks).

4.1 Initialization
The following steps are executed only one time at the beginning of the
algorithm:

The covariance matrices are initialized full of zeros. The starting values
of the state vector s are the correct ones used in the simulation environ-
ment. This is not initialized with an error since the map is build with
respect to the starting position.

4.2 Prediction
The fist step of the iterative part of the algorithm is the prediction step.
In this step a guess on the new position is made using the odometry data
and the information of the previous step .

The following calculations are iterated multiple times before going on
with the algorithm (in this specific case three times). This is done because
the odometry data is integrated at a smaller time step with respect to the
SLAM algorithm itself.

Other than the odometry generation (3.2.3), in which the displacement
is consistent with the surface height, the prediction step in the SLAM
algorithm hypothesizes a displacement in the x − y local plane. This as-
sumption has to be done since the surface shape is unknown and therefore
the rover doesn’t have other information to exploit.

4.2.1 Mean
The first thing that has to be done is computing the angle α using the
values of the distance traveled by the left and right wheels. As already
seen in 3.2.3:

α = dright − dleft
dbaseline

Then it is possible to obtain is the distance traveled by the rover and
the radius of curvature:

dcenter = dleft+dright
2

rc = dcenter
α
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And finally the displacement in the local reference frame:

∆x = rc ∗ [1− cos(α)]
∆y = rc ∗ sin(α)
∆z = 0

This displacement vector can be rotated in the absolute reference frame
using the inverse if the rotation quaternion q−1, as explained in 2.6.1.5.

The last thing to do is the update of the current position adding the
displacement to the position at the previous step (referred to the absolute
frame):

x = x+ ∆x
y = y + ∆y
z = z + ∆z

Then the orientation of the rover must be updated.
Only in the first iteration of the prediction step also the normal to the

surface, detected by the gravity sensor and with its relative error, is used
to compute the correct orientation of the rover. This is done building the
DCM matrix of the rotation from the absolute frame to the local frame.
In a way very similar to the odometry generation already explained in
3.2.3, the rotation matrix is built using the updated velocity unit vector
and the normal to the surface.

The velocity unit vector is updated rotating the local axis y of α coun-
terclockwise:

vx = −sin(α)
vy = cos(α)
vz = 0

The updated velocity vector is then rotated in the absolute frame us-
ing the inverse of the rotation quaternion q−1, as previously explained in
2.6.1.5.

To take only the orthogonal part to the normal to the surface only the
perpendicular component is extracted from the vector:

v⊥ = v − (v · normal) ∗ normal
Using the normalized v⊥and the normal to the surface it is now possible

to build the DCM and then convert it to rotation quaternion, following
the steps written in 2.6.1.1.
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DCM =

 xx xy xz
vx vy vz

normalx normaly normalz


Otherwise, if it is not the first iteration of the prediction step, the

velocity unit vector v is rotated around the local z axis of the angle α
with this method:

First the local z axis vector expressed in the absolute reference frame is
found rotating [0, 0, 1] with the inverse of the rotation quaternion (2.6.1.5).

Then the rotation quaternion zq is composed in this way:

zq0 = cos(−α
2 )

zq1 = zx ∗ sin(−α
2 )

zq2 = zy ∗ sin(−α
2 )

zq3 = zz ∗ sin(−α
2 )

Finally using the Hamiltonian Product (2.6.1.4) the new rotation quater-
nion is found:

qN = zq ∗ qN−1

4.2.2 Covariance
The uncertainties rises after this step, due to the errors introduced by
the movement of the rover. Indeed the movement is only partially known
(since the out of plane contribution is unknown due to unpredictable sur-
face shape) and the known components are not exact.

To update the covariance sub-matrices the Jacobian of the prediction
model A and the noise matrix Q are needed.

The Jacobian of the prediction model A is computed using DA (1.4).
Adding an independent DA variable to each of the first 7 variables of state
(x, y, z, q0, q1, q2, q3) before entering the prediction step it is possible to
obtain the Jacobian as the derivative of each updated variable of state
with respect to the 7 DA objects:

A =



∂x
∂x

∂x
∂y
· · · ∂x

∂q3

∂y
∂x

∂y
∂y
· · · ∂y

∂q3... ... . . . ...
∂q3
∂x

∂q3
∂y
· · · ∂q3

∂q3
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The precess noise matrixQ is fixed and the variables noisetranslation and
noiserotation are decided before starting the algorithm depending on the
odometry uncertainties. The matrixQ is diagonal with the first three diag-
onals values equal to noisetranslation and the last four equal to noiserotation:

Q =


noisetranslation 0 · · · 0

0 noisetranslation · · · 0
... ... . . . ...
0 0 · · · noiserotation


Lastly the covariance sub-matrix Prover is updated using the Jacobian

of the prediction model A and the process noise matrix Q [19, 16, 21]:

PN
rover = A ∗ PN−1

rov ∗ AT +Q

While the cross-covariance sub-matrix of rover-landmark Prover−landmark
is updated in this way [19, 16, 21]:

PN
rover−landmark = A ∗ PN−1

rover−landmark

4.3 Removal of the old landmarks
Since there is a limit in the maximum number of landmarks in the state
vector s and in the covariance matrix P , the landmarks that has not been
observed are deleted to make room for new ones. This process is not
common in all the SLAM algorithms.

This procedure starts with the reading of the cameras measurements.
After all the measurements have been read, it is time to check if there

is some landmark that is saved in the state vector s but has not been
measured.

If this is the case the landmark must be removed from both the state
vector s and the covariance sub-matrices. Thus the size of these changes
according to the new number of slots taken by the landmarks.

If the landmark that must be removed is not in the last taken slot of
the state vector s, then all the landmark saved in the following slots must
be translated in the preceding one.

The same procedure must be done for the covariance sub-matrices,
except for Prover which has fixed size.
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4.4 Correction
The following procedure, that exploits the so called direct observation
model [19], has to be applied for every landmark that has been measured
in this iteration and that was also measured in the previsions one. Incor-
poration of new landmarks in the next step decreases the computational
cost [16]. With this step the uncertainties introduced by the movement
of the rover decreases (not only for the rover position and orientation but
also for the known landmarks), thanks to the cameras measurements of
the surrounding mapped landmarks.

So, once a known landmark has been observed, his 4 measurements
(pleftx , plefty , prightx , prighty ) are stored in a vector called zmeasured.

Since the computations explained here include a sparse matrix (the
Jacobian of the measurement model H, defined below), only the affected
part of the state vector s and covariance matrix P are extracted from the
full ones and saved respectively in sc (with length 10) and Pc (with size
10 ∗ 10). For example, considering the landmark lN :

sNc =



cx
cy
...
q3
lNx
lNy
lNz


PN
c =


Prover Prover−lN

P T
rover−lN PlN lN



The first things that must be computed are the predicted measure-
ments. These data is what it is expected to measure given the new pre-
dicted position and orientation of the rover. The measurement generation
part has been already addressed in 3.2.

Starting from the coordinates of the absolute position of the landmark
(they can be found at the end of the state vector sc) it is possible to
convert them to the local reference frame. This can be done subtracting
the position of the rover to the absolute position of the landmark and
then rotating the resulting vector using the inverse rotation quaternion
q−1 (2.6.1.5).

At this point the coordinates of the landmark with respect to the local
reference frame must also consider the position of the camera. So the local
coordinates with respect to the two cameras can be computed adding (or
subtracting) half of the distance between the two cameras ∆stereo to the
local x coordinate for the left (or right) camera:
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lleft = lx + ∆stereo
lright = lx −∆stereo

As explained in 3.2.5, the Cartesian coordinates can be transformed
to spherical coordinates:

ρ =
√
l2x + l2y + l2z

θ = atan2(
√
l2x + l2y, lz)

φ = atan2(ly, l2x)

Finally it is possible to get the predicted measurements. This is possi-
ble using the same relation used for the measurement generation derived
in 3.2.7. To get the x and y pixels coordinates (px, py) this relation can
be applied (once for each camera):

px = xmax∗tan(φ−π2 )
2∗tan(HFOV2 )

py = ymax∗tan(θ− pi2 )
2∗tan(V FOV2 )

The vector that contains the 4 predicted measurements (pleftx , plefty ,
prightx , prighty ) computed above for a specific landmark is called zpredicted.

Also the Jacobian of the observation model H is computed using DA
(1.4). Adding an independent DA variable to each of the first 7 variables
of state (x, y, z, q0, q1, q2, q3) and to the 3 coordinates of the considered
landmark (lx, ly, lz) before the computation of the predicted measurements
it is possible to obtain the Jacobian as the derivative of each measurement
(px and py for both the cameras) with respect to the the 10 DA objects
mentioned above:

H =



∂pleftx

∂x
∂pleftx

∂y
· · · ∂pleftx

∂lz

∂plefty

∂x

∂plefty

∂y
· · · ∂plefty

∂lz... ... . . . ...
∂prightx

∂x
∂prightx

∂y
· · · ∂prightx

∂lz


The measurement noise matrix R changes for every correction step and

it’s value is based on the distance between the rover and the considered
landmark.
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The variables fixed noise and proportional noise are decided before
starting the algorithm depending on the cameras performances. The ma-
trix R is diagonal with all the diagonals values equal to:

noise = fixed noise+ distance ∗ proportional noise

The measurement noise matrix R looks like this:

R =


noise 0 · · · 0

0 noise · · · 0
... ... . . . ...
0 0 · · · noise


For the computation of the Kalman Gain matrix K, it is first needed

the measurement matrix Z. The latter is obtained in this way:

Z = H ∗ P ∗HT +R

The mentioned Kalman gain matrix K is a measure of how much the
observed landmarks can be trusted. It is obtained as follows:

K = P ∗HT ∗ Z−1

Now it is possible to update both the state vector sc and the covariance
matrix Pc:

sNc = sN−1
c +K ∗ (zmeasured − zpredicted)

PN
c = PN−1

c +K ∗ Z ∗KT

The last thing to do is to update the full state vector s and the covari-
ance matrix P with the updated values of sc and Pc.

This process must be repeated for every measured known landmark.

4.5 New landmarks initialization
The last step is the new landmarks initialization. During this process all
the unknown observed landmarks are appended to the state vector s and
to the covariance matrix P .
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4.5.1 Mean
The initialization starts with the deduction of the landmarks position in
the local reference frame using the cameras measurements, exploiting the
so-called inverse observation model [19].

For the computation of the Cartesian coordinates (x, y, z) in the local
reference frame, starting from the measurements of both the cameras, it
is first considered only the x pixels coordinate of the new landmark.

Consider the following figure, which is in the plane x − y of the local
reference frame. The red triangle vertices are the two cameras (on the
base) and the new landmark at the top [9].

ββ22
ββ11

αα11 αα22

ΔxΔx

ρρ22

ρρ11

aa

LL

PP

Figure 4.1: Trigonometry of the cameras setup

It has been already explained how to switch from pixels coordinates
to spherical coordinates in 3.2.7:

cot(φ− π

2 ) = xmax
2 ∗ px ∗ tan(HFOV2 )

Defining the external angles α1 and α2 (considered positive like in the
figure above) as function of the spherical angle φ (3.2.5):

α1 = φ1 − π
2

α2 = φ2 − π
2
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It then is possible to obtain the more convenient internal angles β1 and
β2:

β1 = π
2 − α1 = π − φ1

β2 = π
2 − α2 = π − φ2

So the it is possible to write the following relation, valid for both the
cameras:

tan(β) = cot(α)

Let’s consider the segment L. It can be obtained in two different ways:

L = a ∗ tan(β1) (4.1)

L = (a+ ∆x) ∗ tan(β2) (4.2)

Where ∆x is the distance between the cameras, so it is two times
∆stereo:

∆x = 2 ∗∆stereo

Dividing (4.1) by (4.2):

a ∗ tan(β1)
(a+ ∆x) ∗ tan(β2) = 1

Reorganizing the equation:

a

a+ ∆x = tan(β2)
tan(β1)

To make these equations more readable let’s define a new variable r
as:

r = tan(β2)
tan(β1)

The equation becomes:

a(1− r) = r ∗∆x

In the end it is possible to get a:

a = r ∗∆x
1− r
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Applying this equivalence to (4.1) or (4.2) two equivalent relations for
L are obtained:

L = r∗∆x
1−r ∗ tan(β1)

L = ( r∗∆x1−r + ∆x) ∗ tan(β2) = ∆x
1−r ∗ tan(β2)

ββ22
ββ11

αα11 αα22

ααmm

ΔxΔx

ρρ22

ρρ11

aa

LL LL

aa ΔsΔs

medianmedian

yy

xx

PP

Figure 4.2: Inverse observation model

As it can be seen from the figure, a is linked with the Cartesian coor-
dinate x in the local reference frame, indeed:

lx = −a− ∆x
2

While L coincide with the coordinate y:

ly = L

Both x and y Cartesian coordinates have been derived, the z coordinate
is still missing. Using the Pythagorean theorem it is possible to compute
the spherical coordinates ρ1 and ρ2:

ρ1 =
√
a2 + L2

ρ2 =
√

(a+ ∆x)2 + L2
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And using the median theorem it is finally possible to get the distance
between the landmark and the rover:

median2 = 1
2 ∗ (ρ2

1 + ρ2
2 −

∆x2

2 )

Using the relations for ρ1 and ρ2:

median =
√
a2 + L2 + ∆x2

4 + a ∗∆x

To make the situation clearer for each camera a new angle ω can be
defined, starting from the spherical coordinate θ, as:

ω1 = θ1 − π
2

ω2 = θ2 − π
2

Using the relations obtained in 3.2.7 the tangent of ω can be derived:

tan(ω) =
2 ∗ py ∗ tan(V FOV2 )

ymax

The tangent of ω is useful to project the median and get the missing
Cartesian coordinate z, in the local reference frame:

lz = −median ∗ tan(ω)

Since this relation is valid for both the cameras (and so for both ω1 and
ω2) to reduce the impact of the measurement noise the algebraic average
is considered.

The coordinates referred to the the local reference frame can be switched
to the absolute one using the inverse of the several times repeated proce-
dure:

• Rotate the position vector of the new landmark using the inverse of
the rotation quaternion, as explained in 2.6.1.5.

• Sum the position vector of the rover to the resulting vector.

The absolute position of the new landmark must be appended at the end
of the state vector s:
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sN =


sN−1

lx
ly
lz



4.5.2 Covariance
To update the covariance sub-matrices with the new sub-matrices PLL and
PLx the SLAM specific Jacobians GR and Gyn+1 are needed [19].

GR is made-up from the derivatives of the absolute position of the new
landmark with respect to the rover position and orientation (GR = ∂l

∂s
)

while Gyn+1 is made up from the derivatives of the absolute position of the
new landmark with respect to its measurements (Gyn+1 = ∂l

∂p
).

Both the Jacobians are computed using DA (1.4), in a similar way to
the computation of A (4.2.2) and H (4.4).

Adding an independent DA variable to each of the first 7 variables
of state (x, y, z, q0, q1, q2, q3) and to the 4 measurements of the new
landmark (pleftx , plefty , prightx , prighty ) before starting the initialization of a
new landmark it is possible to obtain the Jacobians as the derivative of
the computed absolute position of the new landmark with respect to the
first 7 DA objects to get GR and to the last 4 to get Gyn+1 .

GR =



∂lx
∂x

∂lx
∂y
· · · ∂lx

∂q3

∂ly
∂x

∂ly
∂y
· · · ∂ly

∂q3

∂lz
∂x

∂lz
∂y
· · · ∂lz

∂q3



Gyn+1 =



∂lx
∂pleftx

∂lx
∂plefty

∂lx
∂prightx

∂lx
∂prighty

∂ly

∂pleftx

∂ly

∂plefty

∂ly

∂prightx

∂ly

∂prighty

∂lz
∂pleftx

∂lz
∂plefty

∂lz
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∂lz
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The sub-matrices PLL and PLx must be appended to the current co-

variance matrix P in this way:

PN =


PN−1 P T

Lx

PLx PLL
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And they can be computed as reported below:

PLL = GR ∗ PN−1
rover ∗GT

R +Gyn+1 ∗R ∗GT
yn+1

PLx = GR ∗
[
PN−1
rover PN−1

rover−landmark

]
Where R is the measurement noise matrix defined in 4.4.



Chapter 5

Numerical results

In this chapter two different cases are considered: first a reconstruction of
the position and the orientation of the rover using only the wheels encoders
and the gravity sensor (so with a simple integration of the odometry) and
then using the full SLAM algorithm. An high slip surface is simulated
with a Gaussian error N (o, σo) with 0 mean and a variance σo = 0.01 on
the distance measured by the left and right wheels. The numerical results
for both the cases are reported and analyzed below.

5.1 Odometry only

First let’s analyze the trajectory reconstructed by the integration of the
odometry. As said before, the odometry is based on the distance traveled
by the left and right wheels, measured with wheels encoders. Every 3
steps the orientation is recovered also thanks to the gravity sensor, which
measures the normal to the surface. All the measurements are subjects to
Gaussian errors.

The correct trajectory (the circular one) is plotted in red while the
reconstructed one is plotted in cyan. The x and y axes are expressed in
meters.
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Figure 5.1: Trajectory reconstructed with odometry only

The error, computed as the distance between the reconstructed posi-
tion and the correct one, is plotted below for every iteration. The error is
expressed in meters.
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Figure 5.2: Error with odometry, step-by-step

To quantify the drift error in the estimation of the position it is possible
to observe the maximum value of the error. In this case the maximum
error is about 4.69m.
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5.2 SLAM algorithm
Now let’s analyze the same trajectory with the use of the SLAM algorithm.
As written before, the SLAM algorithm has access, every 3 odometry in-
tegration steps, to the cameras measurements (left and right camera) in
addition to the odometry data. A maximum number on the landmarks
stored in the state vector is imposed, in this case 10, to reduce the com-
putational cost of the algorithm.

Figure 5.3: Trajectory reconstructed with the SLAM algorithm

Also in this case the error is plotted below for every iteration. Like
before, the error coincide with the distance between correct position and
recovered one and is expressed in meters.
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Figure 5.4: Error with the SLAM algorithm, step-by-step
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Maximum error in m
SLAM algorithm 0.374

Odometry integration 4.69

Table 5.1: Comparison of the maximum error

The maximum error is now more than an order of magnitude smaller.
Indeed it is about 0.374m. To visualize better this difference a compar-
ison of the two errors plot, one for the SLAM algorithm and one for the
integration of odometry is reported below.
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Figure 5.5: Comparison of the errors with SLAM and with odometry

The error for the odometry only case is very similar to the SLAM
algorithm one for about 35 iterations and then the two errors gradually
get away. This happens because, in the odometry only case, an erroneous
orientation generates a drift which is not corrected by any feedback. This
can also be observed in the trajectory plot. The error of the odometry
only case mainly derives from an inaccurate orientation. Indeed the shape
of the reconstructed trajectory is not very different from the correct one,
which is circular, but there is not overlap between them.

To ensure that not only the mean value but also the uncertainties for
both the rover and the landmarks are correctly estimated, it is possible to
study the sub-matrices of covariance. Indeed using their value, the error
ellipse can be plotted, to check if the mean values are inside this region [18].
In a 3D case the error ellipse is actually an ellipsoid. The error ellipsoid
can be plotted for different confidence values [10]. In the figures below
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it is computed for a confidence of 70%. Thus this error ellipsoid defines
the region that contains 70% of all samples computed from a Gaussian
distribution.

It is first checked the position of the rover. Below there are provided
two plots of the ellipsoid in three different points of the trajectory: at 1

3 , at
2
3 and at the end. The yellow point is the correct position, while the green
one is the estimated one. The ellipsoid is centered around the estimated
position.

If the uncertainties are computed correctly the correct position should
be inside the ellipsoid. To compute the ellipsoid the covariance of the
rover Prover has been used.

Figure 5.6: Error ellipsoids of the position of the rover, plane x− y

Two things stand out: first that the size of the ellipsoid is growing
going on with the trajectory and then that the ellipsoid has a z axis much
smaller than its x and y axes. This is coherent with the trajectory, which
has only small variations in the z direction, due to the uneven surface.
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Figure 5.7: Error ellipsoids of the position of the rover, plane y − z

It can be concluded that for all the three cases the correct point is
inside the error ellipsoid for a confidence level of 70%. This is a good
indicator that the covariance of the rover Prover is estimated correctly.

Figure 5.8: Error ellipsoid of the position of the rover at 1
3 of its trajectory
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Figure 5.9: Error ellipsoid of the position of the rover at 2
3 of its trajectory

Figure 5.10: Error ellipsoid at the end of the trajectory
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It is a good practice to check also if the landmarks are inside their error
ellipsoid. Only the last step of the trajectory is selected for this check. To
compute this ellipsoid the covariance of the landmark Plandmark has been
used.

The landmarks are plotted as little stars in red. They can be viewed
better in the third figure below.

Figure 5.11: Error ellipsoids of the landmarks, plane x− y

Figure 5.12: Error ellipsoids of the landmarks, plane x− z
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Figure 5.13: Error ellipsoid of the landmarks, closer view

Also in this case the landmarks are inside their ellipsoids. It can be
observed how the shape of the ellipsoids strongly depends on the position
of the rover. Moreover just like the ellipsoid of the position of the rover,
also these have a much smaller z axis compared to the other two.

Since the orientation of the rover is not directly visible from the figures
above, a plot of the position (x, y, z) and orientation (q0, q1, q2, q3) for
every correction step of the SLAM algorithm is provided below.
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Figure 5.14: Position and orientation of the rover, step-by-step
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Chapter 6

Conclusions

6.1 Conclusions
As expected, the SLAM algorithm gives a big advantage with respect
to an odometry only based approach. The error of the first is, indeed,
about an order of magnitude smaller compared to the last one on a high
slip surface, thanks to smaller drift error in the estimate. The SLAM
algorithm gives also the advantage of reconstructing a map with all the
observed landmarks.

In addition to the mean value, also the uncertainties are correctly
estimated. This has been proven for both the position of the rover and of
the landmarks.
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6.2 Future developments
In the proposed SLAM algorithm the growing computational cost needed
for a large area has been worked out with the removal of old landmarks.
Even if it is a simple solution, it is not the best one since it induces a
drift error due to the new initialization (with bigger uncertainties) of an
already measured landmark.

A more complex solution is what is called a segmented SLAM [8].
These algorithms can divide the explored area into smaller parts and,
depending on the position and orientation of the sensors, use only a con-
venient subset of the full set of measured landmarks [1].

As written in 1.2, an advantage of building a map and keeping stored
all the observed landmarks is that the SLAM algorithm may have global
consistency. This means that the algorithm can recognize a previously
mapped landmark and close a loop, reducing the drift error.

Also, the DA implemented in this work can be used to develop an high
order SLAM algorithm using a truncated Taylor expansion representation
for the covariance and the Isserlis formula for its propagation. This has
already been done for an EKF in [23], [22] and [5].

The main problem with this approach is that, to be convenient, it
needs a more complex and precise non-linear prediction of the position
and orientation of the rover than the one used in this work. This is an
hard task since for a low speed rover the dynamic is almost absent and
also because the explored surface is unknown a priori.



Appendix A

Run the code

This appendix is a small guide on how to run the code used in this work.
The code has been written on a machine running a Linux distribution

(Arch Linux) updated to the latest package available in the repositories
during the development (late 2018 / early 2019).

The following installation tutorial is based on this setup but should
work flawlessly on every updated Linux machine.

A.0.1 Install the DACE library
The DACE library can be download from https://github.com/dacelib/
dace cloning the GitHub repository:

1 git clone "https :// github .com/ dacelib /dace.git"

Actually in the repository there is an ArchLinux folder containing a
PKGBUILD file to easily install the library on an Arch Linux machine, but
this approach has not been followed because of an experimental feature
that must be enabled.

Indeed, before installing, the CMakeLists.txt file has to be changed
to enable the experimental Algebraic Matrix feature. This can be done
changing this line:

1 option ( WITH_ALGEBRAICMATRIX " Include the AlgebraicMatrix
2 type ( experimental )" OFF)

To this one:
1 option ( WITH_ALGEBRAICMATRIX " Include the AlgebraicMatrix
2 type ( experimental )" ON)

The installation process is very simple and the steps are reported here:
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1 cd dace
2 mkdir build
3 cd build
4 cmake ..
5 make
6 sudo make install

The last thing to do is to make sure that the path to the library
(/usr/local/lib) is present in the /etc/ld.so.conf file. If it is not, it
must be appended.

That process can be also done running the following BASH script:
1 if grep -q /usr/local/lib "/ etc/ld.so.conf "; then
2 echo ’nothing to do ’ > /dev/null
3 else
4 echo ’/usr/local/lib ’ | sudo tee --append \
5 /etc/ld.so.conf > /dev/null
6 fi

A.0.2 Generate the surface and the landmarks
The surface and the landmarks can be generated with the MATLAB script
surface_generator.m. The inputs used (like the dimension of the map,
its number of pixels and the steepness) are the same described in 3.1 and
can be changed in the preamble of the script.

Before the execution it is required to change the MATLAB current
folder with the folder containing the file.

The script automatically plots the generated surface with the land-
marks and saves a picture of them. The inputs and the data of the envi-
ronment (such as the markers position, the surface height for every point
and the normal vectors) are saved in plain text files so that they can be
read by the C++ programs.

Also the workspace is saved to be then used by the scripts that plots
and analyze the results.

A.0.3 Generate the odometry data and the measure-
ments

The odometry and measurement generator has been written in C++ and
it’s called simulator.cpp.

Also in this case the inputs are found in the preamble and can be
changed before the compilation of the program.

simulator.cpp can be compiled with GCC (which is required) and
then executed with this command:



51

1 g++ -ldace ./ simulator .cpp && ./a.out

The program reads the inputs and the data of the environment written
by surface_generator.m.

Its results and inputs also useful for the SLAM algorithm are saved in
plain text files.

A.0.4 Run the SLAM algorithm
Also the SLAM algorithm SLAM.cpp has been written in C++, so its
execution is similar to the program above.

The inputs are found in the first part of the code and it can be compiled
and executed with this command:

1 g++ -ldace ./ SLAM.cpp && ./a.out

The results, together with other data used to analyze the performance
of the code, are saved in plain text files.

A.0.5 Plot and analyze the results
Before the execution of both the script it is required to change the MAT-
LAB current folder with the folder containing the files.

To plot the trajectory computed by the SLAM algorithm the MATLAB
script plots.m can be used.

Likewise surface_generator.m, also plots.m saves the resulting plot
in the current folder.

To analyze the position error and the most relevant matrices at the
various time-steps the MATLAB script data.m can be used.

Before its execution it is required to manually update the maximum
number of landmarks to match the input used in SLAM.cpp. This script
automatically plots 5 different figures.
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